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Abstract 

Fermions which couple to the fields comprising a Nielsen-Olesen vor- 

tex (cosmic string) can generally exist as massiue bound modes on the 

string. If these fermions carry electromagnetic charge then the string 

will act as a conducting wire with capacitance. The interaction of such 

cosmic strings with external electromagnetic fields is significantly al- 

tered from the superconducting string scenario of Witten. The current 

in the string oscillates at a characteristic resonant frequency, - p, and 

therefore produces a signature of narrow band radiation. The current is 

generally limited, - e2E/p, for strings of fixed length. 
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I. Introduction 

Spontaneous symmetry breaking of gauge theories can give rise to objects such as 

solitons, vortices, and monopoles. These objects are typically non-trivial topological 

configurations of gauge and scalar fields. Cosmic strings are presumeably Nielsen- 

Olesen flux tubes which arise when the symmetry breaking has a nontrivial first 

homotopy group, IIr(G/H), [l]. Fermions can couple to these fields and, in partic- 

ular, if fermions obtain a mass by coupling to the complex scalar field of an Abelian 

vortex, massless states localized on the vortex, known as Jackiw-Rossi zero-modes, 

can exist [2]. 

Cosmic strings have received much attention in the astrophysics community as 

it is believed that they may serve as the seeds for galaxy formation. Until recently, 

cosmic strings were thought to be important only through gravitational effects. 

However, Witten [3] has demonstrated that if there are fermionic zero-modes on 

the string which carry electric charge then the string can act as superconducting 

wire. The simplest model which exhibits this phenomenon is a U(1) x U(1)’ gauge 

theory with V(1)’ broken to form the flux tube and the other U(1) representing 

electromagnetism. Currents in these strings can be spectacular and offer a number 

of interesting possibilities for detection and for galaxy formation [4] (we shall not 

discuss the bosonic case in this paper). Presently, however, we will offer a slight 

variation on this simplest model, which we feel is a more general possibility, yet it 

will drastically alter the superconducting string scenarios and signatures. 

The superconductivity of a flux tube is a consequence of the existence of the 

anomaly in an ungauged current (the gauged currents must be anomaly free, as 

usual [S]). In 1 + 3 dimensions there occurs an anomaly involving a mixture of the 

field strength, F,,,,, of the U(1) group and the dual field strength, FL,, of the V(l)’ 

group of the form: 

a?, = 4r2 e’eF’yF~, + mass terms = $2. ij, + mass terms. 

In the simplest U(1) x V(1)’ model J,, is a vector current; the theory conserves parity 

(though in the vortex one can define a parity which is violated); each Weyl spinor 

contributes strength ee’/32nz to the usual anomaly; there are four Weyl spinors and 

we get an additional 2x from the interchange of Ffiy ++ FLY. 
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In the vortex there is a B’ field of the form w ,?2n/e’xr,s; r < t, where n is 

the vorticity of the flux tube and rc the core radius. The low energy fermionic 

zero modes in the vortex may be described by an effective 1 + 1 dimensional chiral 

Lagrangian on the worldsheet of the flux tube, obtained essentially by integrating 

the 1 + 3 Lagrangian in these modes over the cross-sectional area of the string. 

Defining an azial current in this effective theory as 7; = J dA j,, FS mc2j,, we find 

from eq.(l.l) that in the flux tube $’ has an anomaly of the form: 

9;; = fr,,FpY + maas terms = 
2ne 
-E + mass terms. 

a 

Here the contribution of a pure left-mover to the anomaly would be ek/4x = eE/2x. 

The axial current in 1 + 1 arises from a vector current in 1 + 3 because the coupling 

of the Higgs in the vortex to the fermions is chiral, the vortex spontaneously breaks 

parity and produces from a Dirac spinor in 1+3 chiral zero modes in l+ 1. Since the 

effective low-energy theory must produce this identical result by direct evaluation 

of a 1 + 1 Feynman diagram, we see that there must exist N = 27s low energy 

modes in the effective theory (corresponding in the present case to n right-movers 

and n left-movers; see the explicit construction below). This may be viewed as a 

simple demonstration of the Atiyal-Singer index theorem for the flux tube (a more 

constructive approach is developed by E. Weinberg [5]). Note that this discussion 

is somewhat orthogonal to that of Callan and Harvey [6] in that here the anomaly 

in 1 + 1 matches an anomaly in 1 + 3, whereas in ref.[6] there is no corresponding 

anomaly in 1 + 3 to the occurence of one in 1 + 1. Thus the true electromagnetic 

current in ref.161 must be anomaly free and we discover the occurence of additional 

terms involving the axion field which conduct the current in from the surrounding 

vacuum and cancel the anomaly. 

Of course, the consistency of the anomalies between eq.(l.l) and eq.(1.2) is 

essentially a UV statement in both the effective 1 + 1 theory and the 3 + 1 theory. 

We can add various mass terms to the rhs of eq.(l.l) and eq.(1.2) and the index 

theorem counts the light modes at any given energy scale. Indeed, the “threshold 

modes” of Nohl and DeVega [7] have arbitrary masses but still obey the counting 

demonstrated here. In the present paper we will be concerned with the physical 

effects of the mass term corrections to eq.(1.2). 

The actual physics of the superconductivity follows from eq.(1.2). The axial 
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charge density, j; is dual to the electromagnetic vector current, j;, i.e. j, = +jyV. 

For a string of length L the axial charge, Q’ = JdZjt = Lj,V has eigenvalue N 

which is the number of right moving zero-modes minus the number of left moving 

zero-modes on the string (or plus the number of left moving anti-zeremodes on 

the string). States consisting of N/2 right movers and N/2 anti-left-movers are 

electric charge neutral but they correspond to a non-zero electric current flowing 

in the loop. Also, it is important to realise that only the axial anomaly leads to 

such states, since the electric current operator makes only pairs of right (left) - 

moving particles and antiparticles (e.g., the anti-particle of a right-mover is also 

a right-mover). Since +F”” is just an applied electric field tangentially to the 

string, eq.(l.l) states that after some time, t, an applied electric field E produces 

in a string of length L an axial charge, Q3 = LJ~ given by Q3 = (NLe/x)Et or: 

Once the electric field is removed the current remains fixed; it cannot relax by 

electromagnetic annihilation of right and left movers since these are independent 

(non-conjugate) particles (of course the current can relax through the anomaly of 

eq.(1.3)). This same argument is inherent in the more intuitive discussion given by 

Witten in terms of the rearrangement of the Dirac sea of left and right movers in 

the presence of the applied electric field [S]. 

In this letter, we consider the possibility that the fermionic modes localized at 

the string are not exactly zero modes but have a residual non-zero mass. This is 

fully compatible with the symmetries of the theory with a slight generalization of 

the original model of Witten, and may easily occur in a wide class of unified models. 

Indeed, even the minimal model is a special case without these effects which can 

readily occur there. In the absence of this residual mass there is an unbroken chiral 

symmetry in the effective 1+ 1 theory, but this does not correspond to an unbroken 

chiral symmetry in the 1 + 3 parent theory. Indeed, the breaking of the chiral 

symmetry in the 1 + 1 theory can arise from ordinary KM flavor mixing-like effects 

in the parent theory. 

The residual mass term acts like a capacitance in the equation for the electric 

current along the string and the resulting physics is dramatically different than that 

arising in the pure superconductivity case, even for extremely tiny residual masses 
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(e.g for typical current epoch astrophysical parameters we find that no more than 

one Ampere of current occurs for p > 10-i* ev). (This is actually an analogue to 

an electrical capacitance and is an “axial capacitance” in the 1 + 1 model; due to 

the violation of parity the capacitance is a tensor). 

We first present the simplest model Lagrangian which gives rise to massive 

charged modes trapped on a string. The effective theory of l+l dimensional massive 

fermions coupled to 3+1 dimensional electromagnetic fields is studied using the 

bosonized equations of motion. We then discuss how currents are generated in a 

constant electric field and how existing currents decay in the absence of external 

fields. Finally, we sketch the relevance of this model for cosmology. 

II. The Model 

The cosmic string is a non-trivial axially symmetric configuration of a complex 

scalar field C$ and a gauge field A. Throughout this work, these fields will be taken 

as fixed, c-number fields of the form: 

(b(r) = e’“ef(r) 4 = eii.ciA 
f ( 

r) 

Here, (r, 0, Z) are cylindrical coordinates with z along the axis of the string, (~1,572) = 

(r cos 0, r sin 0). For definiteness, we will take n > 0. The asymptotic forms of the 

fields are 

j(r) + j’rl”l A(r) --t 0 for r -+ 0 (24 

f(r) + f. A(r) -+ -; for r-00. 

Witten considers a U(1) x V(1)’ gauge theory where the first U(1) factor is 

the unbroken gauge symmetry Q of electromagnetism and the second U(1)’ is the 

unbroken gauge symmetry R which gives rise to the string. The Lagrangian for the 

fermions in this theory is taken to be: 

L = ;?p&b + ixt* + iXt@ + icvJ% 

+ig~(r,e)@fx - igq(7,e)Pd (2.4) 



-5- FERMILAB-Pub-86/162-T 

$J, x, X and 6 are 2-component (left-handed Weyl) spinors, @ = ofiD, where ~9‘ 

are the unit and Pauli matrices and D, = 8, + ieA, + iqAL where e (q) is the U(1) 

(U(l)‘) charge of the fermion. Spinor indices have been suppressed (we are using 

Van der Waerden conventions). The charge assignments are summarized in Table 

I. 

Table I. Model charge assignments: 

Far from the flux tube the Higgs field may be regarded as having a constant 

VEV. Then we see that the pairs of Weyl spinors, ($, x) and (X, 6) form two 

four-component massive Dirac fields. If we consider one such field by itself, say the 

pair ($J, x), we see that it has a gauged electric current with charge e and a gauged 

axial current of charge q. Such a situation is not allowed by itself because of the 

axial vector anomaly, so we must introduce the pair (X, 6) with gauged axial charge 

-q to cancel the anomaly. Thus the Lagrangian of eq.(2.4) is the minimal anomaly 

free model we can consider. 

There remain a number of currents which are not coupled to gauge fields but 

which do possess anomalies. For example, there is the axial current: 

j, = !b+a,$ + x+upx + X’UJ + 6+a,6 (2.5) 

with the usual axial vector anomaly: 

afij, = e2 --F e + g&w. 8x2 Iru 
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The interesting current for the present discussion, however, is the vector current 

(which may be viewed as the difference between the electric currents of the two 

corresponding Dirac spinors): 

j, = $+o,* - x+upx - X+u,X + 6+0,6 (2.7) 

It is readily verified that j, has a mixed anomaly of the form discussed in the 

introduction: 

(2.8) 

Also, it is readily verified that the matrix element of j, in a state consisting of 

N/2 right-moving zero-modes and N/2 left-moving anti-zero-modes is N/L and is 

equivalent to the matrix element of the z component of the electric current in such 

a state. This is because the pair (r/~, x) produces chiral left-moving zero modes and 

the pair (X, 6) produces chiral right-moving eero modes, as we now show. 

We may demonstrate the existence of the zeromodes by solving the equations 

of motion for the spinor fields in the vortex. Consider the fields $J and x for which 

the equations of motion, 

o’D,$ + gc,Yex’ = 0 a’D,x + g~‘# = 0 (2.9) 

are solved by the separation of var;ables $ = a(t, t)p(r, B)sf, x = a* (E, t)j(r, B)s+ 

where s+ is the constant spinor 
0 0 . 

One has: 

(a, - a&Y = 0 (2.10) 

Cie 
( 

13, - ;a, + qA’ p - ge-‘“‘f(r)j* = 0 
) 

(2.11) 

e-j@ ~3, - ia, + qA’ 3 - ge-‘“‘f(r)P* = 0. (2.12) 

Modes move in the --z direction at the speed of light. The equations for /3 and a 

have been studied in detail by Jackiw and Rossi [2]. They find n regular solutions 

trapped at the origin of the (r,O) plane. We note that the equations for the lower 
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components of $J and x do not admit regular solutions which explains our taking 

the solutions to be proportional to s+. For n < 0, one finds /n] regular solutions 
0 

proportional to s- = 
0 

which move in the +a direction. Note that for fixed 
1 

n > 0 we will thus have from the Lagrangian of eq.(2.4) n left-moving zero-modes 

built of the pair (4, x) and n right-movers from the pair (1, 6). Incidently, the 

antiparticle of a left (right) mover is also a left (right) mover and we see that 

the left and right moving modes must be viewed as completely independent (e.g., 

the right-movers are chiral “electrons” while the left-movers are chiral “muons”). 

Thus, as described in the introduction this model admits superconductivity and is 

the simplest anomaly free example of the class of models considered in ref. [3]. 

Note that the Lagrangian of eq.(2.4) possesses discrete symmetries of the form 

($3 xl -+ -(II, xl; (A, 6) + (X, 6). This leads to a chiral symmetry in the 

1 + 1 effective theory and thus the masslessness of the zeremodes. However, this 

symmetry in the parent theory need not be present. With a slight modification 

this model leads to massive charged states trapped on the string. Additional mass 

terms in the Lagrangian must be neutral in both e and Q charge as well ss Lorentz 

invariant. One cannot construct any such quantities out of the pair (G, x) or 

(X, 6), but we may consider cross-terms of the form $6 and xX. These are simply 

the analogues of flavor mixing Dirac mass terms. 

The Lagrangian is taken to be: 

L = i$+* + ix’& + iA+@ + i6+* 

+igd(r, B)~!J~Ex - ig@(r, B)XTe6 

+ p(tiTc6 + xTd) + h.c (2.13) 

Note that the ,u terms are a consequence of the abandonment of the discrete flavor 

symmetries in the parent theory; such terms will generally occur whether through 

explicit flavor mixing, or through induced effects so long as the flavor symmetries 

are broken somewhere in the parent theory. The equation of motion for, e.g., $ is: 

io’D,11, + igd’q’ - pc6’ = 0. (2.14) 

The equations of motion are solved in much the same manner as was done in the 

previous case, The separation of variables is taken as: 



-8- FERMILAB-Pub-86/162-T 

!LJ = c14.5 t)Hf-, qs+ (2.15) 

x = cza’(z,t)p(r,e)s+ (2.16) 

x = c3a(z, t,p* (7, e)s- (2.17) 

6 = c,a’(z,t)p’(r,B)s- (2.18) 

where ci are constants which depend on w and p, the energy and z-momentum of 

the trapped states and p and fi satisfy the same equations as those studied above. 

The equation for a: is now 

(-a; + a; - p2) a = 0. 

These are modes trapped on the string which behave as particles with mass n, 

having energy w and z-momentum p such that W* = p* + p2. The equations in 

the (r,6’) plane are identical to those studied by Jackiw and Rossi and the same 

counting of solutions applies. The analysis outlined here will be discussed in more 

detail in a future paper [S]. 

The effective field theory for the fermions trapped on the string reduces to the 

problem of l+l dimensional fermions interacting with a 3+1 dimension electromag- 

netic field. The effective Lagrangian is: 

L = -tFe”F,,v + iG+/iDiP + p%Q (2.20) 

Here, p, v run from 0 to 3 and i,j are 0 or 3. The theory can be most easily studied 

using the technique of bosonization. The connection between the fermion theory 

and the equivalent bose theory is made through the identifications: 

j’ s : c&‘Q : = L&aj4 
fi 

(2.21) 

:@a: = -cpcosdG~ (2.22) 

where c is a numerical constant related to the Euler constant (we will not be specific 

about the value of c in the present discussion). The Lagrangian for the Bose theory 

is: 
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L = -aFtiv~pu + iaidaid - eA#ajd + ~~~~~~ 64. 
fi 

Our model somewhat resembles the massive Schwinger model [9, lo], but has an 

important distinction: in the massive Schwinger model, both electromagnetic and 

fermionic fields live in If1 dimensions and one can integrate out the vector boson 

to obtain essentially the effective Lagrangian of eq.(2.23) but with the addition of 

a mass term, @eZ/27r and an additional parameter ~9 associated with the presence 

of an external electric field and entering the Lagrsngian through the argument of 

the cosine “mass” term. Since we do not integrate out the photon field we have no 

such mass term and the 0 parameter becomes irrelevant. 

III. Elementary Applications 

The equation of motion for q5 is (assuming a string of fized length): 

a$+ + -!QaiAj + ficpr sin &q5 = 0 
fi 

(3.1) 

consider first the simple case of a constant electric field applied along the direction 

ofthe string, E = c’j”aiAj = con&ant. 4 will be constant in z and eq.(3.1) becomes: 

;k + LE + fic~2sin&c5 = 0 
J;r 

The equation can be integrated once to give: 

(3.2) 

@ + ~~ + 4cp2sin2 v&$/2 = 0 

where the integration constant is chosen so that 4(t = 0) = 0. In the model studied 

by Witten, n = 0 and J = ejs = e2Et/x. The current builds up until the energy of 

the trapped fermions is equal to the mass of the fermions in the vacuum m = gfc 

and the particles are ejected from the string into the normal vacuum in which they 

are supermassive. The maximum current in the string is then J,., = em/s. If the 

electric field is turned off, then j = 0 and the current runs without dissipation. 

In the ewe at hand, the p term acts ss a capacitance. We note that the equation 

for 4 is equivalent to that of a pendulum in a gravitational field where 4 is the angle 
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made by the pendulum with respect to the vertical and E is the applied torque. 

Clearly, for eE 5 27rcp2, j = -e/&q = 0 h ss a solution and the current reaches 

the maximum value: 

J 
2c ‘J2 

mnz = w ; 0 ( -6&b - 2sin2 v%5/2)“” IsinJii;+=wh (3.4) 

where A z eE/2ncp2. For A < 1 one has &%$ N -A and J,,,,. = (4?r3c)-1/2e2E/h. 

4 now executes simple harmonic motion with frequency of oscillation w2 = 4~cnr 

and the current will produce radiation at this characteristic frequency. 

In astrophysical settings, currents are generated by motion through magnetic 

fields where charges on the string see an electric field PB (p is v/c where c is the 

speed of light, not to be confused with the constant c used above). With this in 

mind. we write the condition that the current reach a maximum as: 

(3.5) 

and the maximum current achieved as: 

J mllz = 1.44 x 10-s(4xc)-“2 ( 1 Gfc,,, ) (p) (y) Amperes. (3.6) 

For comparison, the currents achieved in the pure superconducting case studied by 

Witten can be of the order 1020 amperes. For eE > 2?rcp2 the current grows with 

time and ++ + eEt2/2t/ii, J -+ e*Et/n in agreement with the result obtained in the 

superconducting case. 

We may also consider the case where a large current, Jo, has been generated in 

the string and external fields have been turned off. Integrating eq.(3.1) gives: 

&” = $ J,” - 4~7.4~sinr fid/2 (3.7) 

and the solution for 4 is given by F (k, &&b/2) = -r/et where k2 G 4cp2e2/7rJ,2 

and F is as elliptic integral of the first kind. where F is an elliptic integral of the 

first kind. Expanding in powers of c (2n/ J,,)2 we find: 
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JokZ 2TJot 
J = -JO(l - ;) + 4cos Q 

The current has a large constant component, modulated by small oscillations. Be- 

cause of these oscillations the string will radiate and lose power at a rate - WA’ 

where A is the amplitude of the oscillations. 

Finally we consider the scattering of light by the string. Following the analysis of 

ref. [3], we consider an electromagnetic wave with incident direction perpendicular 

to the string and with the electric field parallel to the string. Choosing the gauge 

At = A, = A, = 0 and noting that there is no z-dependence in the problem, we 

have the coupled equations for A. = A(z,y,t) and I$ = 4(t): 

ii - V’A - +$62(z) = 0 (3.9) 

;P + f+(z = y = 0) + &cp2 sin&d = 0 

These equations differ from those for the superconducting case only in the ad- 

dition of the p2 term in the second equation. 

Taking A(z, y, t) = e -‘W’A(s,y) , #J = e-‘“‘do and considering small oscillations, 

we find: 

(-cd’ + 4zcp2)4 = $4(z = y = 0) 

( -V2 + +)6’(=)) A@, Y) = w~.+,Y) 

f(w) = w2 
w2 - 4zcnz 

The scattering solution is 

A(~) = P.2 - ~~(u)G(z,o)A(o) 

(3.13) 

(3.14) 

where: 
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1 
A(o) = I+ $f(w)G(O,O) ’ 

G(O,O) though divergent if the string is taken as a true 6 function, is finite for a 

string of finite size and is equal to - l/Zaln(A/w) where A depends on the core 

radius of the string. 

The mass term in our theory enters the analysis through f(w). For w - a~, 

f(w) + 00 and the small 4 assumption breaks down. Clearly, this corresponds to 

a resonance in scattering of waves. For large scale magnetic fields of, for example, 

the size of a galaxy, w - lo-“see-‘, and fi >> w for masses in excess of a few 

electron volts, the amplitude of the scattered radiation is reduced by a factor w2/$ 

as compared with the superconducting case. This reduction is quite severe and 

indicates that such strings could not be detected from scattered radiation. 

Throughout the preceding discussion we held the length scale of the string Sxed; 

this is generally not the case in reality since the strings are contracting due to gravi- 

tational and electromagnetic energy losses. The effect of this is to add a term -&/L 

to the lhs of eq.(3.2) and subsequent modifications to the following equations. This 

offers the interesting possibility that strings with arbitrarily small initial seed cur- 

rents can develop exponentially large final currents by shrinking. The resonant 

behavior of these strings may allow excitation by thermal and other unconventional 

mechanisms. Thus, although passage of a present epoch string through a galaxy 

may not lead to large currents for large p, relic strings with large currents may still 

be possible. 

Thus these considerations significantly alter the standard superconducting string 

scenario. Perhaps the most striking behavior in the present situation is the resonant 

LC circuit behavior of the string and its attendant narrow band radiation, which 

may be detectable and would be an impressive signature for the existence of such 

objects. In a future publication we intend to amplify these considerations [E]. 

We acknowledge useful discussions with participants of the Fermilab Cosmic 

String Workshop, December, 1986, especially R. Davis, D. Spergel, and G. Field. 

One of us (C.T.H.) thanks W. Bardeen for a helpful discussion on anomalies in the 

present context and E. Witten for useful comments. 
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